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Abstract
Link prediction is a common problem in network science that cuts across many disciplines. The goal is to forecast the
appearance of new links or to find links missing in the network. Typical methods for link prediction use the topology of the
network to predict the most likely future or missing connections between a pair of nodes. However, network evolution is
often mediated by higher-order structures involving more than pairs of nodes; for example, cliques on three nodes (also called
triangles) are key to the structure of social networks, but the standard link prediction framework does not directly predict these
structures. To address this gap, in recent work, we propose a new link prediction task called “pairwise link prediction” that
directly targets the prediction of new triangles, where one is tasked with finding which nodes are most likely to form a triangle
with a given edge. We extend this work in this manuscript, and we evaluate a variety of natural extensions to link prediction
methods including neighborhood and PageRank-based methods. A key difference from our previous work is the definition
of the neighborhood of an edge, which has a surprisingly large impact on the empirical performance. Our experiments on
a variety of networks show that diffusion-based methods are less sensitive to the type of graphs used and more consistent
in their results. We also show how our pairwise link prediction framework can be used to get better predictions within the
context of standard link prediction evaluation.

Keywords Link prediction · Higher-order methods · PageRank · Neighborhood methods

1 Introduction

Networks are a standard tool for data analysis in which
links between data points are the primary object of study.
A fundamental problem in network analysis is link pre-
diction (Liben-Nowell and Kleinberg 2007; Lü and Zhou
2011a), which is typically formulated as a problem of iden-
tifying pairs of nodes that will either form a link in the
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future (when viewing the network as evolving over time)
or whose connection is missing from the data (Clauset et al.
2008). The link prediction problem has applications in a vari-
ety of domains. For instance, in online social networks of
friendships, predicting that two people will form a connec-
tion can be used for friendship recommendation (Backstrom
and Leskovec 2011). Similarly, predicting new links between
users and items on platforms such as Amazon and Netflix
can be used for product recommendation (Gomez-Uribe and
Hunt 2015). And in biology, link prediction is used to iden-
tify novel interactions between genes, diseases, and drugs
within interaction networks (Lin et al. 2018). In the settings
above, the link prediction problem is oriented around—and
evaluated in terms of—the identification of pairs of nodes
that are likely to be connected. However, there is mount-
ing evidence that the organization and evolution of networks
is centered around higher-order interactions involving more
than two nodes (Milo et al. 2002; Milo 2004; Benson et al.
2016, 2018; Lambiotte et al. 2019). In the case of social
networks, triangles (cliques on three nodes) are extremely
common due to various sociological mechanisms driving
triadic closure (Easley and Kleinberg 2010; Holland and
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Leinhardt 1977; Granovetter 1977; Rapoport 1953). Exist-
ingmethods for link prediction are indeedmotivated by these
ideas. For instance, the Jaccard similarity between the sets of
neighbors of two nodes—a common heuristic for link pre-
diction (Liben-Nowell and Kleinberg 2007)—measures the
number of triangles that would be created if the two nodes
are linked, normalized by the total number of neighbors of
the two nodes. Still, such methods are used to make pre-
dictions on pairs of nodes, rather than a prediction on the
appearance of the higher-order structures directly. In our
recent paper (Nassar et al. 2019), we develop a framework for
directly predicting the appearance of a higher-order structure
and we focus on the case of triangles. Here, we extend the
methods we propose in Nassar et al. (2019) and our exper-
imental setup in order to be able to predict triangles more
reliably. In particular, the main differences from our previ-
ous paper (Nassar et al. 2019) are listed below.

– We modify our definition of neighborhood methods in
this paper in order to capture predictions on edges that
are not part of any triangles (our previous definitionswere
unable to make any predictions on such type of edges).

– We study the convergence and scalability of TRPR
from Nassar et al. (2019), introduce an incremental
update to it (we call the new method TRPRW), and find
that TRPRW outperforms TRPR.

– We change our experimental setup to capture the predic-
tion of adding two edges to the network, whereas in our
previous experimental setup we allowed the prediction
of either edges, or both.

Again, classical link prediction is centered around the fol-
lowing question: given a node u in the network, which nodes
are likely to link to u? This scenario is illustrated in Fig. 1a.
Our framing of the problem is similar, but we instead ask the
following: given an edge (u, v) in the network, which nodes
are likely to connect to both u and v? We call this the pair-
wise link prediction problem, and it is illustrated in Fig. 1b.
There are several scenarios where the pairwise link predic-
tion problem is natural, such as recommending a new friend
to a couple on an online social network, recommending a
movie to a couple in a video site, or predicting an effective
drug given a disease-gene pair. We devise two new algo-
rithms for the pairwise link prediction problem. The first is
based on a variant of seeded (personalized) PageRank that
uses multiple seeds, namely, one seed at each endpoint of
the edge for which we are trying to predict new triadic con-
nections. The second is based on a PageRank-like iteration
that puts more weight on edges that participate in many tri-
angles. In this sense, the method reinforces triangles, and we
call the method “Triangle Reinforced PageRank” (TRPR).
We compare these algorithms to natural extensions of local
similarity measures that are common in link prediction, such

(A) (B)

Fig. 1 a In standard link prediction, we are tasked with finding nodes
that are likely to link to a given node u.b In this paper, we study pairwise
link prediction, where we are tasked with finding nodes that are likely
to form a triangle with a given edge (v,w)

as Jaccard similarity (Liben-Nowell and Kleinberg 2007),
Adamic-Adar similarity (Adamic and Adar 2003), and pref-
erential attachment (Newman 2001). For a given edge, each
of the above methods produces a score for the remaining
nodes in the graph.Wefind that our proposed diffusion-based
methods are the least sensitive to the graph type and degree
distribution and often produce the top results. We provide
code for all the methods used in this paper in the repository:

https://github.com/nassarhuda/pairseed

2 Motivation

Since a network encodes pairwise relationships (edges)
between elements (nodes), the link prediction problem is nat-
ural in many cases. Nevertheless, recent studies have shown
that networks evolve through higher-order interactions, i.e.,
much of the structure in evolving networks involves interac-
tions between more than just two nodes (Benson et al. 2018).
Recent research has also introduced the problem of predict-
ing the timewhen an edge additionwill close a triangle (Dave
and Hasan 2019). Furthermore, random graph models con-
structed from distributions of triangles have shown to be
good fits for real-world data (Eikmeier et al. 2018), providing
additional evidence that triadic relationships are important to
the assembly of networks. These considerations motivate us
to study higher-order generalizations of the link prediction
problem.

3 Link predictionmethods

We now briefly review some related work in link prediction.
As part of this, we will go over methods that we will gen-
eralize in the next section for the pairwise link prediction
problem. All of these methods assign some similarity score
between pairs of nodes, where a larger similarity is indicative
of pairs that are likely to connect. For notation, we use Γ (u)

to denote the set of neighbors of node u in the graph.
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3.1 Local methods

Several approaches to link prediction are based on local infor-
mation in the graph, namely a score is assigned to a pair of
nodesw and u based on their neighborhoodsΓ (w) andΓ (u).

One approach that falls under this category stems from
the idea that as the set of nodes incident to both w and u,
i.e., |Γ (w) ∩ Γ (u)|, increases, the chance that w and u are
connected also increases (Newman 2001). Here, |Γ (w) ∩
Γ (u)| is the number of triangles that would be formed if w

and u were connected. Often, this number is normalized by
the size of the neighborhoods, which gives rise to the Jaccard
similarity between two nodes w and u: |Γ (w)∩Γ (u)|

|Γ (w)∪Γ (u)| .
The Adamic–Adar similarity measure (Adamic and Adar

2003) is another local score that assigns similarity scores
between pairs of nodes based on the premise that when
the common nodes between two nodes have little impor-
tance (where importance is measured by the logarithm of the
degree), it is more likely that these two nodes are connected.
The Adamic–Adar measure defines the similarity between
two nodes w and u as

∑
z∈Γ (w)∩Γ (u)

1
log(|Γ (z)|) . The loga-

rithm function is used in an analogous way to how it is used
in Information Retrieval, to dampen the importance of high
degree nodes. As an example, the logarithm function will
guarantee that the importance of a node with degree 1000 is
close to the importance of a node with degree 1010, whereas
two nodes with degree 10 and 20, will have more distant
importance score. Even though in both scenarios the degree
difference is the same, the importance difference is not.

There are two methods that are similar to the Adamic–
Adar measure, that we discuss here. The first is the resource
allocation index (Lü and Zhou 2011b), and its only differ-
ence from Adamic–Adar is that it removes the log function
from the denominator of the Adamic–Adar equation. It can
be generalized to perform the pairwise link prediction task
in the same way we generalize the Adamic–Adar index in
Sect. 4.1. The second metric is the Soundarajan Hopcroft
index (Soundarajan and Hopcroft 2012). It uses the same
concept from the resource allocation index but restricts pre-
dictions to happenwithin communities. Thismethod, too, can
be generalized to perform the pairwise link prediction task
and can be used when community information is present.

A third local method is based on preferential attachment,
where nodes are more likely to connect to established nodes
in the network, and established nodes have a higher chance
to connect to each other (Barabási and Albert 1999; Newman
2001). Using degree as a proxy for how established a node
is, the preferential attachment score between nodes w and u
is |Γ (w)| · |Γ (u)|.

3.2 Global methods

Another set of approaches for link prediction are based on
aggregating (weighted or normalized) path counts of vary-
ing lengths. In contrast to the local methods described above,
these methods use global information about the entire net-
work. For example, the Katz similarity counts the number
of paths between two nodes, weighting paths of length k by
βk (Katz 1953; Liben-Nowell and Kleinberg 2007), where β

is an attenuation parameter between 0 and 1. Another class
of global methods are methods based on diffusions such as
PageRank (Page et al. 1999). Such diffusionmethods usually
conserve a seeded amount of “mass” across the network, and
for the task of link prediction, they are typically seeded by
a particular node u. The similarity of u to all other nodes
is then given by the amount of “mass” that diffuses to each
other node. We will make use of PageRank-like methods in
the next section.

4 Pairwise link predictionmethods

We propose several methods for the pairwise link prediction
problem. First, we extend the three local methods described
above to measure node-edge similarity. After, we propose
diffusion-based methods akin to seeded PageRank.

4.1 Local similarity measures for pairwise prediction

In Nassar et al. (2019), we extended the common local
methods for link prediction to the pairwise link prediction
paradigm. Through this extension, we needed to define the
notion of a neighborhood of an edge (u,v). Initially, the
intersection of neighborhoods of the edge’s endpoints was
a natural choice, but in practice the intersection set is very
limiting specially in scenarios when an edge is connected to
the rest of the graph, yet does not participate in any trian-
gles (for instance, Figs. 3 and5 in Nassar et al. (2019)). So
here, we revise this definition to capture the union of node
neighborhoods rather than the intersection and state it below.

Γ ((u, v))

= {z | z is connected to u, v, or both, but is not u or v}
= Γ (u) ∪ Γ (v) \ {u, v}.

Note that this is akin to the boundary of a set of vertices in the
graph that is often used to define the size of a cut, which—for
an edge—would correspond to the union of neighborhoods.
Using the substitution gives us three similarity measures that
will compute the similarity of an edge to a node.
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– Jaccard Similarity (JS).

JS(w, (u, v)) = |Γ (w) ∩ Γ ((u, v))|
|Γ (w) ∪ Γ ((u, v))|

– Adamic–Adar (AA).

AA(w, (u, v)) =
∑

z∈Γ (w)∩Γ ((u,v))

1

log|Γ (z)|

– Preferential attachment (PA).

PA(w, (u, v)) = |Γ (w)| · |Γ ((u, v))|

Further, we now introduce other variations of extending the
common local methods for link predictions. Specifically, we
extend the Jaccard similarity and Adamic–Adar measures
to account for a combination of the single link prediction
results. We use the maximum value of the single similarity
score of both endpoints of an edge (u, v) with another node
w, as well as the product of similarity values. We use these
two functions, MAX and MUL, since they are non-linear
combinations of the two single link prediction results. We
state these measure below.

– Jaccard Similarity.

JS–MAX(w, (u, v)) = max(J S(w, u), J S(w, v))

JS–MUL(w, (u, v)) = J S(w, u) · J S(w, v)

– Adamic–Adar.

AA–MAX(w, (u, v)) = max(AA(w, u), AA(w, v))

AA–MUL(w, (u, v)) = AA(w, u) · AA(w, v)

Next, we discuss two methods for pairwise link prediction
based on seeded PageRank, and use a combination of the
single seeded PageRank results to compute a new measure
of similarity between an edge and a node.

4.2 Pair-seeded PageRank

We now restate the pair-seeded PageRank method we use
in Nassar et al. (2019). Seeded PageRank is a foundational
concept in network analysis that models a flow of infor-
mation in a network to predict links and communities on a
network (Andersen et al. 2006; Gleich 2015). Seeded PageR-
ank models information flow from the seed node to other
nodes in the network via a Markov chain, and the stationary
distribution of the chain provides the scores on the nodes.
A high score on a node is a signal that the node should be
connected to the seed node. More formally, let A be the sym-
metric adjacency matrix of an undirected graph, and let P

be the column stochastic matrix of a random walk on that
graph. Specifically, P(i, j) = A(i, j)/|Γ ( j)|. Let u be the
seed node. Then the seeded PageRank scores are entries of
the solution vector x to the linear system

(I − αP)x = (1 − α)eu .

Here, eu is the vector of all zeros, except at index u, where
eu(u) = 1 (i.e., eu is the indicator vector on node u). The
parameter α is the probability of transitioning according to
the probability distribution in P and (1 − α) is the proba-
bility of teleporting according to the probability distribution
in eu . The entries of x can be viewed as similarity scores
between node u and the other nodes, in the same way x is
used in Liben-Nowell and Kleinberg (2007), and thus these
scores can be utilized for standard link prediction.

In the same way seeded PageRank predicts the relevance
of other nodes in the network to a single seed node, we pro-
pose pair-seeded PageRank to predict the relevance of nodes
to a single edge; with these similarities, we are able to make
predictions for the pairwise link prediction problem. For a
given edge (u, v), pair-seeded PageRank solves the follow-
ing linear system:

(I − αP)x = (1 − α)eu,v.

In this case, eu,v is the vector of all zeros, except at indices
u and v, where eu,v(u) = eu,v(v) = 1/2. The solution x
can be interpreted as the similarity of each node to the edge
(u, v). We note that pair-seeded PageRank is equivalent to
the sum of single-seeded PageRank on each of the nodes, up
to a scalar multiple.

Indeed, this is a useful and helpful observation as there are
many systems designed to estimate large seeded PageRank
values for single-seeds by using highly scalable randomwalk
methods (Lofgren et al. 2016). Thus, this technique could
be used wherever a PageRank-style prediction is already
employed.

4.3 Extensions of single-seeded PageRank

We also use the single seeded PageRank solution of each
endpoint of the edge we are interested in predicting links to
and produce two more metrics for relating an edge to a node,
in the same way we did with local methods. Denote xu , and
xv to be the seeded PageRank solutions for nodes u and v

respectively. Then, we define MAX and MUL as follows.

MAX(u, v) = max(xu, xv) (element-wise maximum)

MUL(u, v) = xu � xv (element-wise multiplication)
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Fig. 2 Motivating social
network example for the TRPR
algorithm. If all of the friends of
the blue couple know the red
node, it is likely that the red
node knows the blue couple as
well. Running TRPR on the
above example with eu,v as the
seed vector on the blue nodes
reveals that the red node has the
third highest score after the two
blue nodes. After 10 iterations
of Algorithm 1 with α = 0.85,
the output vector assigns a score
of 0.120 to the red node, 0.062
to the black nodes, and 0.252 to
the blue nodes

4.4 Triangle reinforced PageRank (TRPR)

We now revisit our method, triangle reinforced PageRank,
TRPR from Nassar et al. (2019), extend the method to a
weighted version, and introduce an empirical convergence
study on this method. For an unweighted graph, the PageR-
ank solution is highly affected by the degree of nodes in
the network. Here, we reinforce the influence of triangles by
giving edges participating in many triangles a higher weight.
Figure 2 presents a motivating example for the usefulness of
reinforcing triangles.

To develop our TRPR method, we first introduce a tensor
T , that encodes all triangles in a network:

T (i, j, k) =
{
1 if (i, j, k) is a triangle

0 otherwise.

Again, in our derivation, we assume that the graph is undi-
rected so that T is fully symmetric in all permutations of
indices. A typical way to solve the PageRank linear system is
the powermethod.With TRPR,wemodify the powermethod
by adding a step that redistributes the weights in the net-
work. Specifically, we compute the matrix X̂ = T [x], where
X̂(i, j) = ∑

k T (i, j, k)x(k), which measures the relevance
of edge (i, j) to the distribution of node scores in the vec-
tor x. We then run an iteration of the power method on a
weighted adjacency matrix X = X̂ + A, where the columns
are re-normalized to make the matrix column stochastic.
Algorithm 1 shows the pseudocode.

A weighted version of TRPR. Although TRPR intro-
duces higher weights to edges participating inmany triangles
by forming a new adjacency matrix X̂+ A, these weights are
often dominated by theweights in the adjacencymatrix A. To
give a fair contribution to these edges, we introduce a scalar
multiple to X̂ . Any scalar multiplied by X̂ that produces a
fair contribution of weights from both, X̂ and A, is what
we are looking for and straightforward scalar we choose is
γ = sum(A)/sum(X̂). This scalar will guarantee that the

Algorithm 1: TRPR
Input: T , adjacency matrix of undirected graph A, α, eu,v,

nb. iterations n
Output: x
x0 = eu,v

for i = 1, 2, . . . , n do

X̂
(i) = T [xi−1] # i.e., X̂ (i)

r ,s = ∑
k T (r , s, k)xi−1(k)

P i = normalize(X̂
(i) + A) # column stochastic

xi = αP ixi−1 + (1 − α)x0
return xn

sum of weights in A and γ X̂ are equal. We present the pseu-
docode of the algorithm of the weighted version of TRPR in
Algorithm 2.

Algorithm 2: TRPR-Weighted
Input: T , adjacency matrix of undirected graph A, α, eu,v,

nb. iterations n
Output: x
x0 = eu,v

for i = 1, 2, . . . , n do

X̂
(i) = T [xi−1] # i.e., X̂ (i)

r ,s = ∑
k T (r , s, k)xi−1(k)

γ = sum(A)/sum(X̂
(i)

)

P i = normalize(γ X̂
(i) + A) # column stochastic

xi = αP ixi−1 + (1 − α)x0
return xn

TRPR and TRPRW can be implemented efficiently.
AlthoughTRPR involves the tensorT ,wedonot need to form
it explicitly, and we show an alternative derivation here. We
first unwrap one iteration of TRPR. Let Ai = T [xi−1] + A,
at iteration i , and let D−1

i be the diagonal matrix with the kth
diagonal entry being the inverse of the sum of edge weights
connected to node k in Ai , we can translate xi = αP ixi−1 +
(1 − α)x0 into

xi = α((T [xi−1] + A)D−1
i )xi−1 + (1 − α)x0

Then,

xi = αT [xi−1]D−1
i xi−1 + αAD−1

i xi−1 + (1 − α)x0.

Set yi−1 = D−1
i xi−1. Then

xi = αT [xi−1]yi−1 + αAyi−1 + (1 − α)x0.

The relevant computationally expensive pieces to compute
are T [xi−1]yi−1 and the entries of D−1

i . Both involve the
same type of operation. Using the definition of T [x] we
have that the matrix-vector product z = T [x]y has zi =
∑

j
∑

k T (i, j, k)y( j)x(k). Consequently, if we have any
means of iterating over the triangles of a graph, then we can
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compute T [x]y for any pair x and y in a fashion akin to a
sparse-matrix-vector product but in runtime proportional to
the number of triangles in the graph.

This directly enables us to compute T [xi−1]yi−1. To com-
pute the entries in D−1

i , note that T [x] is a symmetric matrix
because it can be written as a sum of symmetric matrices
(since T is fully symmetric in all permutations). Thus, the
row-sums of Ai are the vertex-degrees we need to build D−1

i .
Let e be the vector of all ones; these row sums are computed
as Aie = T [xi ]e + Ae. Since A is not changing, we only
need to compute the column sums of T [xi ]e at each iteration.
Again, we can use an implicit tensor-vector-vector product
operation to compute the column sums. And thus, all opera-
tions involving the tensor T are linear in terms of the number
of triangles in the network, and we use a fast routine to iterate
through triangles in a graph. For ease of reuse, we provide
the code for TRPR1.

TRPR runs in time proportional to the number of
triangles. We experimentally validate the running time of
TRPR on generalized preferential attachment graphs (Avin
et al. 2015) while varying the size of the graphs. In this
experiment, we vary the edge addition probability pe, and
allow the node addition probability to be 1 − pe. We
use pe values = {0.5, 0.6, 0.7, 0.8, 0.9} and graph sizes
n = {2000, 5000, 10, 000, 20, 000, 50, 000, 100, 000} and
for every pair of (n, pe), we count the number of triangles
produced. In Figure 3, we show the running time in sec-
onds (y-axis) as the number of triangles increases (with the
increase of the edge addition probability) and it shows that
TRPR scales linearly with the increase of the number of tri-
angles and is a fast method when implemented efficiently.

We run TRPR with 10 iterations. While we still seek
a robust convergence theory for the TRPR iteration, at the
moment, we run this algorithm for 10 iterations. This choice
was based on the following experiment, where we study the
ordering of nodes from every iteration. In this experiment,
we study the ordering of the nodes from every iteration and
notice that the order does not change much after just a few
iterations. In Fig. 4, we show the Spearman’s rank correla-
tion coefficient and the Kendall rank correlation coefficient
between two consecutive iterates from TRPR on 4 graphs
from the experiments section. We notice that after a few iter-
ations, 10 iterations, the orderings of the vectors no longer
change (red solid line in Figure 4).

Convergence of TRPR. Convergence of this type of
nonlinear system of equations is theoretically delicate with
bounds that are often insufficient for practice (Benson et al.
2017). As stated, with both starting point and number of
iterations fixed, TRPR produces a unique deterministic and
reproducible set of scores that locally capture the influence of
both the graph and the reinforced triangles. As the number

1 https://github.com/nassarhuda/pairseed/blob/master/trpr.jl

Fig. 3 Time in seconds for running TRPR with 10 iterations on gener-
alized preferential attachment graphs of different sizes as the number
of triangles increases (due to increasing the edge addition probability
in the generalized preferential attachment model). The various colors
correspond to different graph sizes, as shown in the legend. And the
inset figure is a zoom in on the lower left corner of the plot. The shaded
area is 20th and 80th percentiles while the solid line is the median time
after running the same experiment for 20 trials. This figure shows that
TRPR scales linearly with the increase of the number of triangles and
is a fast method which can scale to large graphs

of iterations grows, empirically, we observe that the itera-
tions converge. See our evidence in Fig. 5, where we show
the 1-norm difference (sum of the absolute value of the dif-
ference vector between two consecutive iterates) decay from
two consecutive iterates from TRPR on 4 datasets used in the
experiments section.

5 Experimental setup

We now perform a series of experiments on synthetic as well
as real-world graphs from a variety of disciplines, including
online social networks, communication networks, and bio-
logical interaction networks. We also include experiments
for static networks as well as a temporal network. The main
difference in our experimental setup here from our previous
paper (Nassar et al. 2019), is the focus on predicting both
edges connected to the endpoints of a given edge and we dis-
cuss the details later in this section. Throughout this section,
we use the term seed edge to signify that this is the edge we
would like to make predictions on. When we refer to node
predictions given an edge (u, v), this is analogous to predict-
ing two edges, one from the predicted node to u and another
from the predicted node to v. For a given edge (u, v), we use
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Fig. 4 Spearman’s rank
correlation coefficient and the
Kendall rank correlation
coefficient between consecutive
iterates from TRPR. The solid
plots show the consecutive
correlation values when
truncating the vectors to take the
top 100 nodes, and the dashed
lines compare the orderings in
the full vectors. The vertical red
line represents the 10th iterate.
The text in the figures is the
correlation between the 10th
iterate and the 200th iterate.
These correlations support our
choice of 10 iterations in the
experiments involving TRPR

Fig. 5 1-norm convergence of TRPR on 4 datasets of varying sizes
used in the experiments section. These plots show that TRPR reaches a
steady state experimentally

the Success Probability (SP) measure, which we define as
follows:

SP((u, v), k) =

⎧
⎪⎨

⎪⎩

1 if at least one ground truth node w appears in the top k

predictions for edge (u, v)

0 otherwise.

For our experiments, we want to assess the efficacy of the
methods presented so far, and a common way to achieve this
in link prediction problems is by splitting the set of edges of a
graph into two sets (e.g., Liben-Nowell and Kleinberg 2007).
The input graph to our algorithms will be comprised of the
edges in one set (the bigger set), and the remaining edges
(the smaller set) will be treated as missing edges. Then, for a
given edge in the input graph, the goal is to predict nodes that
connect to both endpoints of this edge. To inspect whether
the predicted edges were in fact the relevant edges to predict,
we look in the missing edges set to see if our predictions are
present there.

Each method presented so far gives an ordering of the
nodes based on the similarity scores computed. Our predic-
tion set will be the top k nodes with the highest similarity
scores, and that aren’t already connected to either endpoint
of the seed edge in the input graph. A correct prediction here
would be a node which forms a triangle with the seed edge
using two edges from the missing edges set. For each graph,
we run 500 random experiments and we try to predict links
to 500 randomly chosen seed edges. For each of these exper-
iments, an SP value (0 or 1) is computed, based on whether
we found at least one correct prediction (SP value of 1) or
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not (SP value of 0). The overall score is then computed as
the mean value over all experiments.

The main choice for this measure in contrast to the area
under ROC curve (AUC score) measure we use in Nassar
et al. (2019), is the small number of nodes that we often want
to recover. For a given edge (u, v) in the input graph, the
missing edges set must have the edges (u, w) and (v,w) for
w to be considered a correct ground truth node for recovery.
In subsequent sections, we will see that the number of such
candidate nodes in the set of missing edges is often small (1
in most instances), and thus ameasure such as the AUC score
does not fully capture the performance of our methods.

5.1 Leave One Edge’s Triangles Out (LOETO)

The LOETO experiments are akin to the leave-p-out cross
validation method, in the sense that we will leave p edges
out and treat them asmissing edges, and the remaining edges
will constitute the input graph. Here, p = (2 × number of
nodes that form a triangle with a randomly chosen edge).
An experimental trial in this setting is designed as follows.
Randomly pick a seed edge in the graph, and find all the
wedges (path of length 2) that form a triangle with this edge.
Next, remove all these wedges and treat them as missing
edges. Figure 6 visualizes this experiment. The graph used
will be the one in panel B of Fig. 6 (the grey dashed edges
no longer appear in the network and the goal is to recover the
connections with the green nodes in the graph). We then use
the pairwise link prediction methods on the seed edge, which
produces an ordering on the nodes, and given this ordering,
we compute the success probability. Since thismethod leaves
a big portion of the graph in the input graph, we compute its
success probability with top k = 5.

5.2 Hold-out cross validation

In this setup, for a given network, we remove 30% of the
edges and treat them as missing edges, and use the remain-
ing 70% of the edges to constitute the input graph. Note that
we increase the split for our missing edges set from Nassar
et al. (2019) since here, we are interested in finding nodes
that connect to both endpoints of a given edge. And increas-
ing the size of the missing edges set increases the possible
number of nodes that fit this criteria for our algorithms to
find. An experimental trial in this setting is designed as fol-
lows. For a random seed edge in the input graph, we use the
pairwise link prediction methods to predict which nodes will
form triangles with the randomly chosen seed edge. Each
method produces a similarity score on all nodes, and we use
the ordering of the nodes induced by the scores to calculate
the Success Probability with top k values = 5, 25.

We also perform a similar experiment on temporal net-
works with timestamps on the edge arrivals. In this scenario,

(A) (B) (C)

Fig. 6 Illustration of the Leave One Edge’s Triangles Out (LOETO)
experiment. For a given graph (subfigure a), randomly pick an edge
(red edge in subfigure b) and remove all edges that form a triangle with
it (dashed gray lines in subfigure b). Run all our methods on this new
graph. The edges to predict are the ones shown in subfigure c

we split the data based on these arrival timestamps—the first
70% of the edges to appear in time constitute the input graph
to our methods, and the later 30% are treated as missing
edges. In this set of experiments, we perform one more pro-
cessing step to guarantee that the network we will use as
input graph is connected. If the network is disconnected, we
extract the largest connected component.

5.3 Summary of methods and parameter settings

Finally, we summarize all of the methods that we use for
pairwise link prediction.

– Pairseed This is our method described in Sect. 4.2. We
use the implementation from MatrixNetworks.jl
(Nassar and Gleich 2018) with α = 0.85. This imple-
mentation solves the linear system until convergence to
machine precision.

– TRPR This is our method described in Sect. 4.4. We use
α = 0.85 and number of iterations n = 10.

– TRPRW This is the modified weighted version of the
TRPR algorithm described in Sect. 4.4 as well. We use
α = 0.85 and number of iterations n = 10.

– MUL, MAX These are the methods from Sect. 4.3 that
extend the single-seeded PageRank solutions.We use the
same implementation used by Pairseed, with α = 0.85.

– AA, PA, JS For a seed edge, we compute the general-
ized Adamic–Adar, preferential attachment, and Jaccard
similarity scores, respectively (as presented in Sect. 4.1)
between the seed edge and all remaining nodes in the
graph.

– AA–MUL, AA–MAX, JS–MUL, JS–MAX These are the
methods from Sect. 4.1, and they use the single node
similarity from both endpoints of a seed edge to compute
a new measure of similarity.
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Table 1 Statistics of the
real-world datasets used in this
paper

Network name Nodes Edges Triangles Type

Penn94 41536 1362220 7207796 Social

Caltech36 762 16651 119562 Social

Ch-Ch-Miner 1510 48512 568466 Biology

P-P-Pathways 21521 338624 2394642 Biology

email 1133 5451 5343 Communication

CollegeMsg 1899 13838 14319 Temporal

Email-EU 1005 32128 105461 Temporal

Fig. 7 Success probability results for the two biological datasets. In
both datasets, we notice that TRPRW outperforms the remaining diffu-
sion type methods and performs best on the top k predictions metric on
the Ch-Ch-Miner dataset. Another method that stands out in these two

datasets is AA-MUL which is the best method in terms of top k pre-
dictions in the P-P-Pathways dataset, with TRPRW performing worse
than AA-MUL by around 5% on the top k measures

Fig. 8 Success probability results for the two social networks datasets.
In both datasets, we notice that local methods generally outperform
diffusion type methods. This is mainly due to how social networks
grow (Schoenebeck 2013) and the influence of neighbors of nodes for

making new connections. Here too, TRPRW outperforms other diffu-
sion type methods and produces comparable results to the best local
methods on the top 25 and LOETO measures
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Fig. 9 Success probability results for the two networks, email and an
instance of a GPA graph. We group these two graphs together because
they have a very small number of triangles compared to the other net-
works. In these datasets TRPRW does not contribute an improvement

over the other diffusion type methods. In the email network, TRPR per-
forms best in the top k metric, and TRPRW performs best after the PA
method on the GPA graph

Fig. 10 Binary Mean Value results for the two temporal networks, CollegeMsg and Email-EU. The results on temporal networks are generally
worse than the results on static networks, and this can be an indicator that our methods are stronger in predicting missing links rather than future
links

6 Pairwise link prediction results

In all of the results in this section, we report the success prob-
ability from our predictions over 500 random experiments.
We use seven real-world graphs from different disciplines in
this section and give a summary of their statistics in Table 1.
We also use a synthetic graph generated from the generalized
preferential attachment model (GPA) (Avin et al. 2015).

Synthetic graph. generalized preferential attachment
(GPA) (Newman 2001) is a synthetic graph generationmodel
that generalizes the classical preferential attachment model
to allow for the addition of new components at each step of
the algorithm. For our experiments, we generate a graph with
5000 nodes and allow the event of node addition with prob-
ability 1/2, and we allow the event of edge addition with
probability 1/2. The starting graph structure is a clique of

size 5. At each step of the graph generation process, an edge
or node is added by attaching proportionally to the degrees
of the existing nodes.

Real world graphs. We use various real world graphs
to test our methods and provide statistics about them in
Table 1. Penn94 and Caltech36 are online social networks
from the Facebook100 collection of datasets (Traud et al.
2012). These two datasets are the biggest and smallest net-
works in terms of number of nodes respectively from this
collection. Ch-Ch-Miner is a biological network of drug
(chemical) interactions (Wishart et al. 2017; Stanford SNAP
Group 2017). P-P-Pathways is a biological network of phys-
ical interactions between proteins in humans (Agrawal et al.
2018). email is an email communication network (Guimerà
et al. 2003). Finally, CollegeMsg (Panzarasa et al. 2009)
and email-EU (Panzarasa et al. 2009) are temporal net-
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works representing privatemessages (CollegeMsg) or emails
(email-EU) between users in a network.

Results. Weshow the results of allmethods in Figs. 7, 8, 9,
and 10. Overall, we notice that the diffusion methods have
more consistency in performance compared to local mea-
sures. For instance, AA-MUL — which is one of the best
performers on some datasets (P-P-Pathways in top 25 and
top 5 metrics) — drops to be one of the worst performers
in the top 25 metric on the email dataset. PA is the best per-
former on theGPAmodel, but drops to be theworst performer
on all other graphs. In contrast, TRPRWperforms best on the
Ch-Ch-Miner and email datasets but never drops to be one of
the worst methods on any of the datasets. Temporal graphs
(CollegeMsg and Email-EU) both suffered from lower top
k scores as compared to static graphs, which suggests that
our methods are possibly stronger in detecting missing links
rather than future links. Upon further investigation on the
temporal graphs, we found that most of the top k predictions
were at least two hops away from the seed edges. In the tem-
poral data, these wedges (length-2 paths) did not close to
form triangles and thus the prediction was incorrect accord-
ing to the timestamped data. TRPRW seemed to improve the
performance of TRPR in general but did not contribute an
improvement on the email and GPA networks. Upon looking
closely at these two networks, we found that the number of
triangles is very small and thus using the unweighted TRPR
version which is close in performance to Pairseed, is more
ideal on datasets that do not contain many triangles.

To summarize, the diffusion type methods (Pairseed,
TRPR, and TRPRW) seem to have themost consistent results
across all experiments, with TRPRWperforming better when
the number of triangles in the network is large. In contrast,
local methods (such as ones related to Adamic–Adar and
the Jaccard similarity) seem to be reliable for predictions on
social networks specifically and this mainly related to how
social networks grow (Schoenebeck 2013).

7 Back to standard link prediction

In this sectionwe bring our attention back to the standard link
prediction problem and show how the methods we presented
in this paper can also be used to further enhance standard
link prediction. We split our data in the same way to the
previous experiments except that here we use an 80–20 split.
This is because we no longer need to find paths of length 2
for prediction purposes and we can thus increase the set of
missing edges by 10%. Then, for the top 100 nodes with the
largest degree in the input graph, we perform different types
of seeded PageRank diffusion for link prediction on these
nodes. This choice of nodes serves the purpose of identifying
nodes that have a higher chance of making connections in the

Table 2 Description of methods inspired by pairwise link to perform
the standard link prediction task

sum� For a certain node i , aggregate the
pair-seeded PageRank results
from all edges adjacent to i . This
is equivalent to performing
PageRank with a normalized
initial vector valued 1 at the
indices of all the neighbors of i ,
and degree(i) at index i .

max• This is similar to the previous
approach, but here, we instead
take the element-wise maximum
value of the pair-seeded
PageRank vectors.

star-seed+ This is similar to pair-seeded
PageRank, except that we start
PageRank with a normalized
initial vector valued 1 at the
index of the seed node and all its
neighbors.

TRPR� This uses the same starting vector
used by star-seed, but instead,
applies the TRPR algorithm on it.

test data.Wemeasure performance in termsofAreaUnder the
ROC curve (henceforth, AUC score). Our baseline is single-
seeded PageRank.

Our results on pairwise link prediction suggest that mul-
tiple seeds with PageRank-like methods are effective for
prediction. Here, we consider four different multiple-seeding
strategies and compare them to single-seeded PageRank for
the classical link prediction problem.We summarize the four
new methods in Table 2. The methods sum, max, and star-
seed are motivated by the double seeding idea used in the
previous sections.

We use real-world networks from Sect. 6, and present our
results in Fig. 11. The scatter plots compare the AUC score
of the neighborhood-based seeding methods to the AUC
scores from single-seeded PageRank. These results suggest
that neighborhood-based seeding is superior to single-seeded
PageRank as a link prediction method.

8 Discussion and future work

Link prediction is a well-studied research topic due to its util-
ity in many disciplines. Traditional link prediction methods
aim to find pairs of nodes that are likely to form a link. Here,
we studied a higher-order version of the problem called pair-
wise link prediction where we predict nodes that are likely
to form a triangle with an edge.

In our previous work, (Nassar et al. 2019), we gen-
eralized local link-prediction methods and we developed
two PageRank-based methods for this problem. In this
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Fig. 11 Results of standard link
prediction experiment on four
real-world networks. Each
scatter plot shows the link
prediction AUC results of 100
experiments of methods inspired
by our pairwise link prediction
proposal with respect to the
AUC scores of single-seeded
PageRank. The solid black line
is the plot of f (x) = x . Points
above the line are cases where
our proposed methods have
superior performance to
standard single-seeded
PageRank. We see that in most
cases the four methods
outperform the classical seeded
PageRank method. This study
suggests that it is useful to
consider a node’s neighborhood
for the purposes of seeding for
link prediction with PageRank.
The values in the legend serve as
a summary performance
measure, which is the average
distance to the f (x) = x line

manuscript, we revised our generalizations of the local
link-prediction methods and added new extensions to these
methods. Further, we included a more detailed analysis of
the convergence and scalability of TRPR from Nassar et al.
(2019), and introduced an incremental update to it, namely
TRPRW. In general, the PageRank-based methods remained
consistent in behavior on a variety of datasets. Using these
results as inspiration, we then developed multiple-seeding
strategies for PageRank in classical link prediction, which
outperform their standard single-seeded counterparts.

TRPR (Triangle Reinforced PageRank) is our new prin-
cipled method for the task of pairwise link prediction. We
demonstrated that TRPR is computationally efficient; the
implementation details of TRPR can improve on the ide-
alized algorithm by taking advantage of a triangle iterator
that avoids building a tensor. We also presented a weighted
version of TRPR (TRPRW)which gave equal weighting con-
tributions from edges and triangles. We note that highly
efficient implementations of our procedures are possible

given their close relationships with traditional PageRank
methods. Scaling to billions of nodes and edges is simply
not a problem given current abilities to compute PageRank
(e.g., Lofgren et al. 2016), and especially that we have an
existing routine to iterate through triangles in a graph quickly.
Even though we do not provide theoretical evidence on the
convergence of TRPR, we presented a discussion that shows
that, in fact, TRPR appears to converge and reach a steady
state empirically.

In this paper, we focused on the problem of predicting
a node to connect to the endpoints of a given edge, and an
alternate problem is to predict an edge that is important when
given a single node. We intend to extend this work to the
latter scenario by adapting TRPR to this purpose. TRPR can
be adapted by fixing one seed node and using the values

in the matrix X̂
(i)

from Algorithms 1 and 2 as similarity
measures between edges and the seed node. Finally, the work
we present in this paper provides a framework for higher-
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order link prediction that is not limited to triangles, and the
space of higher-order prediction problems has limitless sub-
structure.
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